Search results

Search for "relay catalysis" in Full Text gives 4 result(s) in Beilstein Journal of Organic Chemistry.

Photocatalytic sequential C–H functionalization expediting acetoxymalonylation of imidazo heterocycles

  • Deepak Singh,
  • Shyamal Pramanik and
  • Soumitra Maity

Beilstein J. Org. Chem. 2023, 19, 666–673, doi:10.3762/bjoc.19.48

Graphical Abstract
  • products with excellent yields and regioselectivity, thus confirming excellent functional group tolerability. Keywords: C–H functionalization; imidazo heterocycles; photoredox; regioselective; relay catalysis; Introduction Among all N-fused heterocycles, imidazo[1,2-a]pyridines (IPs) are the prevalent
  • using air as the sole oxygen source. Keeping in mind the progress in photochemical relay catalysis [24] and the attention paid to photocatalytic carbon-bond functionalization in the past several years [25], here we developed an organophotoredox-catalyzed C–H functionalization of imidazo[1,2-a]pyridines
  • activation and functionalization of sp2 and sp3 C–H bonds via relay catalysis (Scheme 4). The relay can be divided into two cycles; the first cycle (cycle-1) deals with the C(sp2)–H functionalization at the C-3 position of the imidazo heterocycles, while the second cycle (cycle-2) is all about the C(sp3)–H
PDF
Album
Supp Info
Letter
Published 12 May 2023

Electrocatalytic C(sp3)–H/C(sp)–H cross-coupling in continuous flow through TEMPO/copper relay catalysis

  • Bin Guo and
  • Hai-Chao Xu

Beilstein J. Org. Chem. 2021, 17, 2650–2656, doi:10.3762/bjoc.17.178

Graphical Abstract
  • terminal alkynes has been achieved in a continuous-flow microreactor through 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)/copper relay catalysis. The reaction is easily scalable and requires low concentration of supporting electrolyte and no external chemical oxidants or ligands, providing straightforward
  • electrocatalytic dehydrogenative cross-coupling reaction of tetrahydroisoquinolines with terminal alkynes in continuous flow (Scheme 1D). These reactions require low loadings of supporting electrolyte and proceed through Cu/TEMPO relay catalysis without need for additional ligands. Results and Discussion The
  • through reversible reaction with this cationic species. Conclusion In summary, we have achieved the electrochemical dehydrogenation cross-coupling of tetrahydroisoquinolines with terminal alkynes in continuous flow through Cu/TEMPO relay catalysis. This work demonstrates that continuous-flow
PDF
Album
Supp Info
Letter
Published 28 Oct 2021

Recent advances in organocatalytic asymmetric aza-Michael reactions of amines and amides

  • Pratibha Sharma,
  • Raakhi Gupta and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2021, 17, 2585–2610, doi:10.3762/bjoc.17.173

Graphical Abstract
  • high enantioselectivities (up to 65–91%) [40]. Rajasekar et al. developed an efficient one-pot tandem rhodium(II)/chiral squaramide relay catalysis for the enantioselective construction of dihydro-β-carbolines 37 from the Michael reaction of suitably substituted indole derivatives 34 with N-sulfonyl
PDF
Album
Review
Published 18 Oct 2021

Fe(II)/Et3N-Relay-catalyzed domino reaction of isoxazoles with imidazolium salts in the synthesis of methyl 4-imidazolylpyrrole-2-carboxylates, its ylide and betaine derivatives

  • Ekaterina E. Galenko,
  • Olesya A. Tomashenko,
  • Alexander F. Khlebnikov,
  • Mikhail S. Novikov and
  • Taras L. Panikorovskii

Beilstein J. Org. Chem. 2015, 11, 1732–1740, doi:10.3762/bjoc.11.189

Graphical Abstract
  • Emb. 7/9, 199034, St. Petersburg, Russia 10.3762/bjoc.11.189 Abstract A simple approach was developed for the synthesis of methyl 4-imidazolylpyrrole-2-carboxylates from easily available compounds, 5-methoxyisoxazoles and phenacylimidazolium salts under hybrid Fe(II)/Et3N relay catalysis. The
  • reaction with sulfur affording the corresponding imidazolethiones under very mild conditions. Keywords: imidazole; isoxazole; NHC carbene; pyrrole-2-carboxylate; relay catalysis; Introduction Pyrrole-2-carboxyate and imidazole units are present in bioactive pyrrole-imidazole alkaloids and pyrrole
  • -dicarbonyl compounds under relay catalysis [31]. Taking into account the facts discussed above, we envisioned that the synthesis of 5-alkoxycarbonylpyrrol-3-ylimidazolium salts 1 could be carried out starting from easily available 5-alkoxyisoxazoles 7 [32][33] and 1-alkyl-3-phenacyl-1H-imidazolium bromides 9
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2015
Other Beilstein-Institut Open Science Activities